Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
(e^(-4*x)*cos(x))'The calculation above is a derivative of the function f (x)
(e^(-4*x))'*cos(x)+e^(-4*x)*(cos(x))'
e^(-4*x)*((-4*x)'*ln(e)+(-4*x*(e)')/e)*cos(x)+e^(-4*x)*(cos(x))'
e^(-4*x)*((-4*x)'*ln(e)+(-4*x*0)/e)*cos(x)+e^(-4*x)*(cos(x))'
e^(-4*x)*(((-4)'*x-4*(x)')*ln(e)+(-4*x*0)/e)*cos(x)+e^(-4*x)*(cos(x))'
e^(-4*x)*((0*x-4*(x)')*ln(e)+(-4*x*0)/e)*cos(x)+e^(-4*x)*(cos(x))'
e^(-4*x)*((0*x-4*1)*ln(e)+(-4*x*0)/e)*cos(x)+e^(-4*x)*(cos(x))'
e^(-4*x)*((-4*x*0)/e-4*ln(e))*cos(x)+e^(-4*x)*(cos(x))'
e^((-4)'*x-4*(x)')*cos(x)+e^(-4*x)*(cos(x))'
e^(0*x-4*(x)')*cos(x)+e^(-4*x)*(cos(x))'
e^(0*x-4*1)*cos(x)+e^(-4*x)*(cos(x))'
0^(-4*x)*cos(x)+e^(-4*x)*(cos(x))'
e^(-4*x)*(cos(x))'-4*e^(-4*x)*cos(x)
e^(-4*x)*(-sin(x))-4*e^(-4*x)*cos(x)
-4*e^(-4*x)*cos(x)-(e^(-4*x)*sin(x))
| Derivative of 10cos(x^2) | | Derivative of e^(3cos(x)) | | Derivative of 14e^x | | Derivative of 3x^6e^x | | Derivative of 3((cos(x)^2)) | | Derivative of (8cos(x))+(3tan(x)) | | Derivative of ln(x)/e^x | | Derivative of 2-(3^1/2)*sin(x) | | Derivative of 4x-4 | | Derivative of (pi^3/(x^2))+((x^3)/pi^3) | | Derivative of 2-2cos(x) | | Derivative of x^2^x | | Derivative of ln(x-9y) | | Derivative of sin(e^2x)*cos(e^3x) | | Derivative of sin(ln(2+cos(5+e^7x))) | | Derivative of 8x^10-4(t)^-2+11/t | | Derivative of (1+x^2*sin(5x)) | | Derivative of 8x^10-4(t-11/t)^-2 | | Derivative of t^4 | | Derivative of (t^4)+800 | | Derivative of 4t^3+800 | | Derivative of -7e^x+1 | | Derivative of 8x^10-4(t-10/t)^-2 | | Derivative of 7e^x+1 | | Derivative of (t^5)cos(6t+7) | | Derivative of 8/x^8 | | Derivative of 9x+19 | | Derivative of (6*x*e^(6*x)-e^(6*x))/(x^2) | | Derivative of (e^(6x))/x | | Derivative of ln((9-x)/(9+x)) | | Derivative of 10*ln(x) | | Derivative of -6e^(x+2)+e^(-3) |